AFS 2021 Presidential Lecture: The Evolution of FLIP in Motility Diagnostics

Peter J. Kahrilas, M.D. Northwestern University Chicago, USA

Peter J. Kahrilas: Financial Disclosures

- Consultant: Ironwood Pharmaceuticals, Reckitt Benchiser, Johnson & Johnson
- *Investment/ownership*: none
- Speakers Bureau: none
- *Research grant Support (clinical trials)*: Ironwood
- *Patents*: Shared patent on FLIP with Drs Pandolfino and Lin

Hydrostat: a Modified Barostat

The impetus for FLIP technology

Hydrostat: a Modified Barostat

The impetus for FLIP technology

Hydrostat: a Modified Barostat

The impetus for FLIP technology

Fluoroscopic images of Hydrostat:normal subject

RPP #14 v7/3/19 PJK

FLIP #11 v10/1/19 PJK

http://www.crospon.com/catheters.htm

EGJ distensibility index as criterion for achalasia Lower limit of normal = 2.8 mm²/mmHg

FLIP #6 v9/11/18 PJK

Carlson DA et al. Am J Gastroenterol 2016;111:1726

FLIP in the evaluation of dysphagia and EMDs *Applications*

- Achalasia diagnosis and subtyping
 - Motility assessment in lieu of manometry

FLIP assessment of EGJ in achalasia *Complementary test in diagnosis and outcome assessment* Untreated **Poor Response** Good Response CH4RG_LIVE_DATA_1.TXT ACH44JD_LIVE_DATA_1.TXT 25.0 23.9 17.8 15.8 14.0 **13.2** 15.1 18.2 **26.0** 2011:07:19-11:45:06|487 2011:10:04-13:18:52|510 2012:02:07-12:11:29|944 24.9 23.4 23.5 OON PRES. 192 mm Volume: 40 ml Volume: 40 ml Volume: 40 ml $CSA = 24 \text{ mm}^2$ CSA= 137 mm² $CSA = 21 \text{ mm}^2$ Pressure =22.8 mmHg Pressure =19.2 mmHg Pressure =63.1 mmHg EGJ distensibility index=1.05 EGJ distensibility index = 7.1 EGJ distensibility index = 0.33

FLIP #17 v 1/6/21

Pandolfino JE et al, Neurogastroenterol Mot 2013;25:496-e368

Assessment of treatment response in achalasia FLIP vs HRM: 52 pts 13 (4-204) mof after treatment

EGJ-DI better associated with outcome than IRP or LES pressure

FLIP in the evaluation of dysphagia and EMDs Applications

- Achalasia diagnosis and subtyping
 - Motility assessment in lieu of manometry
- Achalasia treatment assessment
 - Intraoperative
 - Recurrence

FLIP Panometry: esophageal *diameter* topography

FLIP #21 v 1/6/21

FLIP in the evaluation of dysphagia and EMDs Applications

- Achalasia diagnosis and subtyping
 - Motility assessment in lieu of manometry
- Achalasia treatment assessment
 - Intraoperative
 - Recurrence
- Functional assessment of EGJ outflow obstruction

Flip Panometry Assessment of EGJ Obstruction *Methodology*

- 687 patients (245 with outflow obstruction on HRM, 314 nl on HRM, 128 inconclusive) and 35 controls with FLIP and HRM studies included
- Flip data exported and analyzed with open source software: <u>http://www.wklytics.com/nmgi</u>
- Two metrics: Distensibility index (DI) at 60 ml and Max EGJ diameter achieved at 60ml or 70ml
 - Areas of dry catheter artifact excluded

Flip Panometry Assessment of EGJ Obstruction Determining Distensibility Index (EGJ-DI) and Max diameter- normal

Flip Panometry Assessment of EGJ Obstruction *Distensibility Index (DI) and Max diameter- Achalasia*

Flip Panometry Assessment of EGJ Obstruction *Distensibility Index (DI) and Max diameter- Scleroderma*

Reduced EGJ distensibility in achalasia

Controls

Median (5th-95th percentile) EGJ-DI 5.6 (2.9-9.3 mm²/mmHg Max Diam 18.1 (12.9-21.9) mm

🔺 Achalasia

Median (5th-95th percentile) EGJ-DI 0.9 (0.3-2.7 mm²/mmHg Max Diam 6.0 (4.8-9.7) mm

Single metric: EGJ-DI<2.0 mm²/mmHg Controls 0% (0/42) Achalasia 91% (219/240)

Flip Panometry Classification of EGJ Obstruction Based on 687 patients and 35 controls

- Normal EGJ Outflow (NEO)= EGJ-DI ≥2mm²/mmHg and Max diameter ≥16 mm
- Borderline EGJ Outflow (BEO)= EGJ-DI <2mm²/mmHg or Max diameter <16 mm
- Reduced EGJ Outflow (REO)= EGJ-DI <2mm²/mmHg and Max diameter <12 mm

Flip Panometry Assessment of EGJ Obstruction vs HRM diagnosis of Disordered EGJ Outflow 687 patients and 35 controls

Normal EGJ outflow on Disorder of EGJ outflow Normal HRM CC v4.0 on HRM CC v4.0 EGJ opening Normal 11 (NEO) EGJ opening 10 (NEO) 10 EGJ DI- 60 ml (mm²/mmHg) C 9 Controls SSc O Patients 7 EGJ-DI (60ml) Borderline **EGJ** opening Borderline (BEO) EGJ opening (BEO Reduced Reduced (REO) (REO) 24 22 Maximum EGJ Diameter (mm) Maximum EGJ Diameter (mm)

FLIP #27 v 7/7/21

Carlson DA, et al. Clin Gastroenterol and Hepatol 2021: In Press

Flip Panometry Classification of EGJ Obstruction Based on 687 patients and 35 controls

- Normal EGJ Outflow (NEO)= EGJ-DI ≥2mm²/mmHg and Max diameter ≥16 mm
- Borderline EGJ Outflow (BEO)= EGJ-DI <2mm²/mmHg or Max diameter <16 mm
- Reduced EGJ Outflow (REO)= EGJ-DI <2mm²/mmHg and Max diameter <12 mm

Among the 241 patients with REO, 86% had a conclusive HRM disorder of EGJ outflow per CCv4.0

Among the 203 patients with NEO, 99% had normal HRM EGJ outflow per CCv4.0

FLIP in the evaluation of dysphagia and EMDs Applications

- Achalasia diagnosis and subtyping
 - Motility assessment in lieu of manometry
- Achalasia treatment assessment
 - Intraoperative
 - Recurrence
- Functional assessment of EGJ outflow obstruction
- Functional assessment of secondary peristalsis

Flip Panometry Assessment of Peristalsis Methodology

- 706 patients (245 with achalasia 1-3 on HRM, 178 nl on HRM) and 35 controls (3 with IEM) with FLIP and HRM studies included
- Flip data exported and analyzed with open source software: <u>http://www.wklytics.com/nmgi</u>
- 50-70 ml volumes evaluated for contractile response (CR) patterns
 - Normal Contractile Response (NCR)
 - Borderline Contractile Response (BCR)
 - Impaired/Disordered Contractile Response (IDCR)
 - Spastic Reactive Contractile Response (SRCR)
- Studies read blindly by 4 authors and 3 trained outside reviewers

Flip Panometry Assessment of Peristalsis Methodology- Normal Contractile Response (NCR) 5 10 Diameter (mm) 5 10 25 30

Carlson DA, et al. Neurogastroenterol Mot 2021: In Press

Flip Panometry Assessment of Peristalsis

Methodology-Borderline Contractile Response (BCR)

Carlson DA, et al. Neurogastroenterol Mot 2021: In Press

Flip Panometry Assessment of Peristalsis

Methodology-Impaired/Disordered Contractile Response (IDCR)

Carlson DA, et al. Neurogastroenterol Mot 2021: In Press

Flip Panometry Assessment of Peristalsis

Methodology-Absent Contractile Response (ACR)

Carlson DA, et al. Neurogastroenterol Mot 2021: In Press

Flip Panometry Assessment of Peristalsis Spastic Reactive Contractile Response- RRCs

RRCs- repetitive retrograde contractions of ≥ 6 *axial length occurring at a rate of* >9 *contractions per minute- this example had type III achalasia on HRM*

Sustained LES Contraction (-SLESC)- sustained reduced LES diameter with increased FLIP pressure for >5s independent of esophageal body contractionthis example had hypercontractility and small HH on HRM

Flip Panometry Assessment of Peristalsis Spastic Reactive Contractile Response-SOC

Sustained Occluding Contraction (SOC)- non-propagating occluding contraction in continuity with the EGJ for >10s – this example had type III achalasia on HRM

HRM vs FLIP Panometry Classification of Peristalsis

Panometry Response Pattern

Panometry Assessment of EGJ Obstruction among Contractile Response Classifications: Normal Contractile Response (NCR)

Panometry Assessment of EGJ Obstruction among Contractile Response Classifications: Borderline Contractile Response (BCR)

Panometry Assessment of EGJ Obstruction among Contractile Response Classifications: Impaired/Disordered Contractile Response (IDCR)

Panometry Assessment of EGJ Obstruction among Contractile Response Classifications: Absent Contractile Response (ACR)

Carlson DA, et al. Neurogastroenterol Mot 2021: In Press

Panometry Assessment of EGJ Obstruction among Contractile Response Classifications: Spastic-Reactive Contractile Response (SRCR)

Carlson DA, et al. Neurogastroenterol Mot 2021: In Press

Flip Panometry Classification of 2° Peristalsis Based on 706 patients and 35 controls

- Transition from normality (NCR with RACs) to abnormality (BCR, ACR) paralleling 1° peristaltic function assessed on HRM (normal, IEM, absent contractility)
 - Some discordance is observed: Panometry detects non-occluding contractions
- Abnormal spastic motor contractions (IDCR, SRCR) are observed
 - SOCs are better than RRCs to differentiate spastic (type III) and non-spastic achalasia
 - RRCs, SOCs, and sLESCs are observed in patients with spastic motor findings on HRM, hiatus hernia, and epiphrenic diverticula suggesting that when seen, these merit further evaluation
- HRM and FLIP Panometry are complementary evaluations of esophageal motor function

A normal contractile response on FLIP panometry in the setting of a normal endoscopy effectively excludes achalasia

FLIP in the evaluation of dysphagia and EMDs *Conclusions*

- Easily done in conjunction with sedated endoscopy
- Equal to (or better than) HRM in detecting achalasia
- Objective measure of treatment efficacy in achalasia
- Provides functional assessment of EGJOO irrespective of IRP
- Potential to replace HRM in the detection of EMDs

